
Calculus of Variations and Infinite Series
Freddie Bullard
Epiphany 2024



Contents

0 Introduction 3

0.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Calculus of Variations 3

1.1 Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Euler-Lagrange Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Lagrange Multipliers Recipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Generalised Coordinates and Degrees of Freedom . . . . . . . . . . . . . . . . . . . . 5

2 Infinite Series 5

2.1 Series and Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Convergence Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Integration tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Differentiate under integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.3 Laplace’s method (steepest descent approximation) . . . . . . . . . . . . . . . 7

2.4 Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Beta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2



0 Introduction

0.1 Preface

The module this course belongs to is assessed over two short, open-book examinations. As a
consequence, these notes are very brief and contain very little proof or reasoning.

1 Calculus of Variations

1.1 Functionals

Definition (Functional). A functional maps a function or set of functions to the real numbers,

S : Cn(R) → R (1)

S : f(x) → S[f ] =

∫ b

a
F [f, f ′, x]dx, (2)

where Cn(R) is the space of at least n-differentiable functions on R and F is an expression involving
f, f ′, x.

A physically interesting example of a functional is distance D, which is a function of the path γ,

γ = (x(t), y(t)) . (3)

The total distance is found by integrating along the path,

D[γ] =

∫ B

A
ds =

∫ tB

tA

ds

dt
dt =

∫ tB

tA

√
ẋ2 + ẏ2dt. (4)

Definition (Functional Derivative). Consider some functional S which is a function of f, f ′, x,
where we can write

S[f ] =

∫ b

a
L[f, f ′, x]dx. (5)

Under a small, arbitrary perturbation δf where δf(a) = δf(b) = 0,

δS =

∫ b

a
δLdx =

∫ b

a

(
∂L

∂f
δf +

∂L

∂f ′ δf
′
)
dx. (6)

Integrating by parts, and applying the boundary conditions, we find that the functional derivative
is

δS

δf
=

∂L

∂f
− d

dx

∂L

∂f ′ (7)

where

δS =

∫ b

a
dxδf

(
δS

δf

)
. (8)

When the functional derivative is zero, the change in the functional is zero and hence the functional
is extremised.
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1.2 Euler-Lagrange Equations

Consider a functional

S[f ] =

∫ b

a
L[f, f ′.x]dx. (9)

The stationary paths of S are found by solving the Euler-Lagrange equations,

∂L

∂f
− d

dx

(
∂L

∂f ′

)
= 0. (10)

The integrand L of the functional is called the Lagrangian. It typically has the form

L = T − V, (11)

where T and V denote the kinetic and potential energy, respectively.

Consider the total derivative of the Lagrangian,

dL

dx
=

∂L

∂x
+

∂L

∂y
y′ +

∂L

∂y′
y′′. (12)

If
∂L

∂x
= 0, then substituting the Euler-Lagrange equation yields

d

dx

(
L− y′

∂L

∂y′

)
= 0, (13)

implying the quantity in the bracket is a conserved quantity in x.

1.3 Lagrange Multipliers

Lagrange Multipliers provide a way to solve constrained optimisation problems. Consider a function
f(x) : Rn → R and a constraint p(x) = 0; we want to find the value of x that maximises (or
minimises) f while satisfying the constraint. To maximise f , we need

∇f · dx = 0, (14)

where dx is parallel to p. Hence, if we solve

∇f = λ∇p where p = 0, (15)

we solve our problem. We have reformulated our constrained optimisation problem as an uncon-
strained optimisation problem, where we ask for the stationary points of a new function ϕ(x, λ),

ϕ(x, λ) = f(x)− λp(x). (16)

Maximising against x obtains the ∇f = λ∇p condition, and maximising against λ gives the condi-
tion p = 0.
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1.3.1 Lagrange Multipliers Recipe

An easy recipe to extremise a function f(x, y) : R → R subject to a constraint C(x, y) = 0:

1. Find the Euler-Lagrange equations for f − λC

2. Manipulate the E.L.s to find x and y as functions of λ

3. Substitute into constraint equation and solve for λ

4. Substitute λ into E.L.s to find solutions for x and y.

Of course, this recipe can be extended for a function of many variables.

1.4 Generalised Coordinates and Degrees of Freedom

Definition (Configuration Space). The configuration space is a vector space containing generalised
coordinates ξ(t) that specify the configuration of the system. Generalised coordinates capture all
information about the system in one single vector. In general, for a system of N different free
particles, the configuration space has 3N dimensions (degrees of freedom). Although the Cartesian
coordinates are the standard choice, generalised coordinates can take many forms - often, it is much
more natural to work with different coordinates and calculations can be simplified significantly.

2 Infinite Series

2.1 Series and Summation

Definition (Partial Sum). Let {an : n ∈ N} be a sequence of terms, then the partial sum Sn is
defined as the finite sum

Sn =
n∑

i=1

ai. (17)

If limn→∞ Sn exists and is finite, we say the series converges to S. Otherwise, it diverges.

Definition (Convergence). Formally,

∀ ϵ > 0 ∃ n0 ∈ N, S ∈ R s.t. |Sn − S| < ϵ ∀ n ≥ n0, (18)

i.e. for all ϵ greater than 0 there exists some positive integer n0 and some real number S such that
the absolute difference between Sn and S is less than epsilon for all n greater than or equal to n0.

Definition (Absolute convergence). A series
∑

an converges absolutely if the series
∑ |an| con-

verges. It can be proven that

∑
an converges absolutely =⇒

∑
an converges. (19)
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Definition (Unconditional convergence). A series
∑

an converges unconditionally if the series∑
aπ(n) converges absolutely for every bijection π : N → N, i.e. no matter how we order the

elements of an, the sum still converges. It can be proven that a series converges absolutely if an
only if it converges unconditionally.

2.2 Convergence Tests

It is important to determine if a series converges. Here are a few popular convergence tests for
infinite series with terms an.

Lemma (Ratio test). If

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ exists and < 1, (20)

then S =
∑

an converges. If

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ exists and > 1, (21)

then S =
∑

an diverges. If the limit is equal to 1 then the test is inconclusive.

Lemma (Comparision test). Let (an) and (bn) be non-negative sequences and suppose that there
exists some C and n0 such that ∀ an ≤ Cbn and n ≥ n0, then, if

∑
bn converges,

∑
an converges.

Similarly, if
∑

an diverges,
∑

bn diverges.

Lemma (Integral test). If f(x) is a continuous, monotonically decreasing function for x ≥ x0 ≥ n0

and f(n) ≥ an, then ∫ ∞

x0

f(x)dx < ∞ =⇒
∞∑

n=0

an converges. (22)

Lemma (Cauchy’s nth rooth test). If an ≥ 0 ∀ n ∈ N,

1. limn→∞ a
1/n
n < 1 =⇒ ∑

an converges

2. limn→∞ a
1/n
n > 1 =⇒ ∑

an diverges

3. limn→∞ a
1/n
n = 1 =⇒ ∑

an inconclusive

Lemma (Condensation test). If an > 0 and an+1 < an ∀ n ∈ N (i.e. series is monotonically
decreasing), then

∞∑

n=1

an converges ⇐⇒
∞∑

k=0

2ka2k converges (23)

Lemma (Alternating series test). Suppose un ∈ R and un ≥ 0. Suppose also that un forms a
decreasing sequence with un → 0 as n → ∞. Then, the alternating series

∞∑

n=1

(−1)n+1un converges (24)
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2.3 Integration tricks

For whatever reason, this course made a short segway into integration tricks. Most of these are
quite simple, but here is a quick recap.

2.3.1 Differentiate under integral

For some integral I, multiply the integrand by some function of α, for example e−αx, to yield a new
integral I(α) where I = I(0). We can then find the derivative dI/dα and rearrange into a more
favourable form. Finally, we integrate with respect to α to find I = I(0).

2.3.2 Polar Coordinates

Sometimes, changing into a more natural set of coordinates can make integration easier. Polar
coordinates are sometimes a good choice.

x = r cos θ (25)

y = r sin θ (26)

dA = dxdy = rdrdθ (27)

2.3.3 Laplace’s method (steepest descent approximation)

Suppose f(x) is a twice continuously differentiable function on [a, b], and there exists a unique point
x0 ∈ (a, b) such that

f(x0) = max
x∈[a,b]

f(x) and f ′′(x0) < 0, (28)

then ∫ b

a
eMf(x)dx ≈ eMf(x0)

√
2π

M |f ′′(x0)|
. (29)

This is exact in the limit M → ∞.

2.4 Gamma function

Definition (Gamma function). The gamma function is defined as

Γ(x) =

∫ ∞

0
dttx−1e−t. (30)

For x > 0. For a positive integer n ∈ N,

Γ(n) = (n− 1)!. (31)
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For a positive half integer n/2, n ∈ N,

Γ
(n
2

)
=

√
π
(n− 2)!!

2(n−1)/2
, (32)

with Γ(1/2) =
√
π. Integrating Γ by parts yields a useful relation,

Γ(x+ 1) = xΓ(x). (33)

We can use this relation to define Γ for negative arguments. For example,

Γ(−1/2) = Γ(1/2− 1) =
1

1/2− 1
Γ(1/2) = −2

√
π. (34)

2.5 Beta function

Definition (Beta function). The beta function B(p, q) is defined by

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
. (35)

It can also be represented as an integral in several forms:

• Polynomial form

B(p, q) =

∫ 1

0
tp−1(1− t)q−1dt, (36)

• Trigonometric form

1

2
B

(
1

2
(p+ 1),

1

2
(q + 1)

)
=

∫ π/2

0
sinn(t) cosm(t)dt, (37)

• Alternative polynomial form

B(p, q) =

∫ ∞

0

tp−1

(1 + t)p+q
dt, (38)

where ℜ(p),ℜ(q) > 0.
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Series Convergence/Divergence Flow Chart

Does lim
n→∞

an = 0?

Test for Divergence

Does an = n−p, n ≥ 1?

yes

p-series

Does an = arn−1, n ≥ 1?

no

Geometric Series

Does an = (−1)nbn
or an = (−1)n−1bn,

where bn ≥ 0?

no

Alternating Series Test

Try one or more of the following:

no

Is lim
n→∞

|an+1|
|an| 6= 1?

Ratio Test

Pick {bn}. Does∑
bn converge?

Comparison Test

Pick {bn}. Are an > 0,
bn > 0, and does
lim
n→∞

an
bn

= c for c

finite and nonzero?

Limit Comparison Test

Does an = f(n),
where f(x) is de-

creasing and positive?

Integral Test

Is p > 1?

Is |r| < 1?

Is bn+1 < bn and lim
n→∞

bn = 0?

Is lim
n→∞

|an+1|
|an| < 1?

Is 0 ≤ an ≤ bn?

Is 0 ≤ bn ≤ an?

Does
∑

bn converge?

Does

∫ ∞

1
f(x) dx converge?

∑
an Diverges

∑
an Converges

∑
an Diverges

∑∞
n=1 an = a

1−r
∑

an Diverges

∑
an Converges

∑
an Abs. Converges

∑
an Diverges

∑
an Converges

∑
an Diverges

∑
an Converges

∑
an Diverges

∑
an Converges

∑
an Diverges

no

no

yes
yes

no

yes
yes

no

yes yes

yes
yes

no

yes

no
no

yes

yes

yes
yes

no

yes
yes

no

If you want to use the Comparison, Limit Comparison, or Integral
Tests for a series with both positive and negative terms, you can
only check for absolute convergence by taking absolute values of
each term and then applying those tests.
For the Comparison Test, is it good to have a guess beforehand
as to whether or not the series converges, and use the appropriate
direction for your inequality.
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